Power Operations in Elliptic Cohomology and Representations of Loop Groups

نویسنده

  • MATTHEW ANDO
چکیده

The first part describes power operations in elliptic cohomology in terms of isogenies of the underlying elliptic curve. The second part discusses a relationship between equivariant elliptic cohomology and representations of loop groups. The third part investigates the representation theoretic considerations which give rise to the power operations discussed in the first part.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Operations in Complex - Oriented Cohomology Theories Related to Subgroups of Formal Groups

Using the character theory of Hopkins-Kuhn-Ravenel and the total power operation in complex cobordism of tom Dieck, we develop a theory of power operations in Landweber-exact cohomology theories. We give a description of the total power operation in terms of the theory of subgoups of formal group laws developed by Lubin. We apply this machinery in two cases. For the cohomology theory Eh, we obt...

متن کامل

Classifying Spaces, Virasoro Equivariant Bundles, Elliptic Cohomology and Moonshine

This work explores some connections between the elliptic cohomology of classifying spaces for finite groups, Virasoro equivariant bundles over their loop spaces and Moonshine for finite groups. Our motivation is as follows: up to homotopy we can replace the loop group LBG by the disjoint union ⨿ [γ]BCG(γ) of classifying spaces of centralizers of elements γ representing conjugacy classes of elem...

متن کامل

Modular Forms and Topology

We want to discuss various applications of modular forms in topology. The starting point is elliptic genus and its generalizations. The main techniques are the Atiyah-Singer index theorem, the Atiyah-Bott-Segal-Singer Lefschetz fixed point formula, Kac-Moody Lie algebras, modular forms and theta-functions. Just as the representations theory of classical Lie groups has close connections with the...

متن کامل

Gerbal Representations of Double Loop Groups

A crucial role in representation theory of loop groups of reductive Lie groups and their Lie algebras is played by their non-trivial second cohomology classes which give rise to their central extensions (the affine Kac–Moody groups and Lie algebras). Loop groups embed into the group GL∞ of continuous automorphisms of C((t)), and these classes come from a second cohomology class of GL∞. In a sim...

متن کامل

Moonshine Elements in Elliptic Cohomology

This is a historical talk about the recent confluence of two lines of research in equivariant elliptic cohomology, one concerned with connected Lie groups, the other with the finite case. These themes come together in (what seems to me remarkable) work of N. Ganter, relating replicability of McKay-Thompson series to the theory of exponential cohomology operations.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000